Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation.

نویسندگان

  • Sabine Lévi
  • R Mark Grady
  • Michael D Henry
  • Kevin P Campbell
  • Joshua R Sanes
  • Ann Marie Craig
چکیده

The dystrophin glycoprotein complex (DGC) is a multimolecular complex that links the extracellular matrix to the cytoskeleton. The DGC is present at the skeletal neuromuscular junction and required for its maturation and maintenance. Members of the DGC are also expressed in brain. We used cultured hippocampal neurons to analyze the distribution, regulation, and role in synaptogenesis of the major transmembrane component of the DGC, dystroglycan; one of its extracellular ligands, agrin; and one of its cytoskeletal binding partners, dystrophin. alpha-Dystroglycan, beta-dystroglycan, and dystrophin clustered at a subset of inhibitory synapses containing GABA(A)R subunits alpha1, alpha2, and gamma2, and the inhibitory receptor anchoring protein gephyrin. DGC components were not detected at excitatory glutamatergic synapses. Dystroglycan is the first identified adhesive macromolecule at mature GABA synapses. Developmentally, dystroglycan clustered at synaptic loci after synaptic vesicles, GABA(A)R, and gephyrin, the latter being closely associated with GABA(A)R at all stages of synaptogenesis analyzed. Analysis of gephyrin -/-, agrin -/-, and mdx mouse hippocampal neurons in culture indicated that synaptic clustering of dystroglycan occurs independently of gephyrin, agrin, and dystrophin. In dystroglycan-deficient neurons, cultured from a conditional mutant strain, GABAergic synapses differentiated with clusters of gephyrin and GABA(A)R apposed to synaptic terminals, but these synapses did not contain detectable dystrophin. Thus the DGC is not essential for GABAergic synaptogenesis but is likely to function in modulating inhibitory synapses or conferring specialized properties on a subset of them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses.

Dystroglycan (DG), a cell adhesion molecule well known to be essential for skeletal muscle integrity and formation of neuromuscular synapses, is also present at inhibitory synapses in the central nervous system. Mutations that affect DG function not only result in muscular dystrophies, but also in severe cognitive deficits and epilepsy. Here we demonstrate a role of DG during activity-dependent...

متن کامل

GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses.

Golgi-specific DHHC (Asp-His-His-Cys) zinc finger protein (GODZ) is a DHHC family palmitoyl acyltransferase that is implicated in palmitoylation and regulated trafficking of diverse substrates that function either at inhibitory or excitatory synapses. Of particular interest is the gamma2 subunit of GABA(A) receptors, which is required for targeting these receptors to inhibitory synapses. Here, ...

متن کامل

Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents.

Fast inhibition in the cortex is gated primarily at GABAergic synapses formed by local interneurons onto postsynaptic targets. Although GABAergic inputs to the somata and axon initial segments of neocortical pyramidal neurons are associated with direct inhibition of action potential generation, the role of GABAergic inputs to distal dendritic segments, including spines, is less well characteriz...

متن کامل

Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess ...

متن کامل

Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors.

GABAergic synapses are crucial for brain function, but the mechanisms underlying inhibitory synaptogenesis are unclear. Here, we show that postnatal Purkinje cells (PCs) of GABA(A)alpha1 knockout (KO) mice express transiently the alpha3 subunit, leading to the assembly of functional GABA(A) receptors and initial normal formation of inhibitory synapses, that are retained until adulthood. Subsequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2002